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Abstract 
Single-channel speech enhancement refers to the task of improving the quality and 
intelligibility of a speech signal in a noisy environment. Time-domain and time-
frequency-domain methods are two main categories of approaches for speech 
enhancement. In this paper, we propose a approach based on a cross-domain 
framework. This framework utilizes our knowledge of the spectrogram and 
overcomes some of the limitations faced by time-frequency domain methods. First, 
we apply the intrinsic mode functions of the empirical mode decomposition and an 
improved version of principal component analysis. Then, we design a cross-domain 
learning framework to determine the correlations along the frequency and time 
axes. At low SNR = -5 dB, the effectiveness of our proposed approach is 
demonstrated by its performance based on objective and subjective measures. With 
average scores of -0.49, 2.47, 2.44, and 0.68 for SegSNR, PESQ, Cov, and STOI, 
respectively. The results highlight the success of our approach in addressing low SNR 
conditions. 

Author Keywords. Speech Enhancement, Empirical Mode Decomposition, Principal 

Component Analysis, Learning Model. 

Type: Research Article 

 Open Access  Peer Reviewed  CC BY 

1. Introduction 

In many speech-processing applications, such as speech recognition, telecommunication 
devices and hearing aids, speech enhancement is a crucial task. There have been extensive 
studies on this subject in the past, and numerous effective models have been proposed. 
According to specific applications, such as to enhance the speech signal quality, and to 
increase the effectiveness of the voice communication device, speech enhancement 
nevertheless continues to be a difficult challenge in a single-channel real world context (Loizou 
2013). Time-frequency (T-F) domain approaches and time-domain methods are the two broad 
categories into which speech enhancement techniques can be divided. In T-F domain 
methods, the speech signal is analyzed and modified in the joint time-frequency domain, 
typically using transforms such as the Short-Time Fourier Transform (STFT) or the Mel-
Frequency Cepstral Coefficients (MFCC). These methods exploit the spectral information and 
temporal evolution of the speech signal to enhance its quality. They often involve techniques 
like spectral subtraction, Wiener filtering, or mask estimation to suppress noise and enhance 
speech. Furthermore, common amplitude and frequency modulations are often present in 
speech signals. These modulations result from various linguistic and articulatory factors and 
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contribute to the perception of speech intelligibility. T-F domain methods can exploit these 
modulations by analyzing the variations in amplitude and frequency content across different 
T-F bins in the spectrogram. This allows for the identification and separation of speech 
components from noise (Hershey 2017). However, T-F domain methods may suffer from 
limitations such as the trade-off between time and frequency resolution, the uncertainty 
principle, and the need for accurate estimation of noise statistics. In addition, the metric 
mismatch problem in the T-F domain for speech enhancement arises when there is a 
discrepancy between the objective metric used for training a deep learning system and the 
subjective perceptual quality that humans perceive. 

On the other hand, time-domain methods operate directly on the time-domain waveform of 
the speech signal. They leverage signal processing techniques, statistical models, and machine 
learning algorithms to enhance the speech quality (Pascual 2017). These methods often utilize 
features such as fundamental frequency, harmonicity and temporal correlations to distinguish 
between speech and noise components. Time-domain methods offer advantages such as 
preserving the fine details of the speech signal, handling non-stationary noise, exploit the 
long-term temporal context of the speech signal and avoiding the limitations imposed by the 
uncertainty principle in T-F domain methods. However, they may face challenges related to 
training complexity, robustness to different noise types, and accurate modeling of speech and 
computationally demanding and requires a large amount of training data. It can be more 
challenging to design effective loss functions and evaluate the performance of the models. 
Additionally, these methods may be more sensitive to noise and require careful regularization 
techniques to avoid overfitting. 
In this study, we take the advantages of approaches in the two domains. Fortunately, we have 
observed that the benefits of time-frequency domain methods are primarily prominent in the 
early stages of the network, while the advantages of time-domain methods are more 
pronounced in the later stages of the network. Therefore, we propose a new single-channel 
speech enhancement approach based on the application of the empirical mode 
decomposition, the optimal principal component analysis, and a learning block. Our approach 
is decomposed into three essentials stages. First, a speech denoising strategy based on 
spectral intrinsic mode functions (IMFs) of the empirical mode decomposition (EMD) is applied 
with the advantage that the basic functions are derived from the signal itself and we obtain 
an adaptive analysis. To further improve denoising character of IMFs, in the second stage, we 
recover the low-rank matrix, the sparse matrix, from the obtained IMFs spectrogram under 
the perturbation of a residual matrix. In these two steps, we examine an unsupervised mode 
of analysis that possessed the benefits of EMD's signal extraction of the dominant mode, 
sparse decomposition, and low-rank matrix. These upgrades can deliver the outcomes and 
make the decomposition more logical in an unsupervised manner. However, we apply a 
learning system that consider the benefits from both time-frequency domain and time domain 
methods. The fundamental concept behind our work is to identify long-range correlations in 
the time-frequency domain that were acquired from the unsupervised part. Then, a learned 
decoder is applied in time-domain to enhance the speech. The suggested method can handle 
a variety of noise implications, including Gaussian white, babble, and factory noises.  
The rest of this work is arranged as follows. The related works are presented in Section 2. 
Section 3 describes the detailed of our proposed approach. To test the effectiveness of the 
proposed approach using the TIMIT database will be carried out in section 4. In section 5, we 
draw our conclusions. 
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2. Related Work 

In this section, we will review single-channel speech enhancement approaches in both the 
time-frequency domain and the time-domain. In the T-F domain, one commonly used 
approach is spectral subtraction, which estimates the noise power spectrum and subtracts it 
from the observed spectrum to enhance the speech components (Ben 2016). Other T-F 
domain methods include Wiener filtering, where a time-varying gain function is applied to the 
noisy speech spectrogram, and non-negative matrix factorization, which decomposes the 
spectrogram into a sum of non-negative basis components (Shao 2011, Islam 2015, Liu 2020). 
Additionally, wavelet transform methods (WT) is a time-frequency domain analysis technique 
(Hu 2004, Shao 2011, Islam 2015, Liu 2020). By decomposing a signal into different frequency 
components at different time scales, the wavelet transform provides a localized 
representation of the signal in both time and frequency. An alternative category is sub-space 
approach. It is a technique used to separate the desired speech signal from background noise 
or interference by exploiting the differences in their spatial characteristics. The idea is to 
capture the subspace or spectral properties of the speech and noise signals separately. This is 
achieved by analyzing the signal in the joint time-frequency domain (Martin 2005, Candès 
2011). Subspace decomposition techniques, such as Principal Component Analysis (PCA), 
Independent Component Analysis (ICA), and Non-negative Matrix Factorization (NMF), are 
commonly used in the time-frequency domain for speech enhancement applications (Toh 
2010, Sahin 2019). Deep learning-based speech enhancement approaches in the T-F domain 
have gained significant attention and demonstrated promising results in improving speech 
quality. One widely used technique is the deep neural network (DNN)-based speech 
enhancement. DNNs, such as feedforward neural networks or convolutional neural networks 
(CNNs), are trained to learn the mapping between noisy and clean speech spectrograms. The 
network takes the noisy spectrogram as input and produces an enhanced spectrogram as 
output. A considerably DNN with dilated convolution and bi-LSTM is created in (Zhao 2018). 
The receptive field is expanded via dilated convolution, and bi-LSTM learns long-range 
correlations along the time axis. Leglaive et al. proposed a variational auto-encoders approach 
(Leglaive 2020). The recurrent variational is fine-tuned at test time with a Gaussian noise 
model based on a non-negative matrix factorization. To record harmonic correlations along 
the frequency axis, the network's front end employs a frequency transformation block. At the 
conclusion of the network, a biLSTM is utilized to capture temporal dependencies. Another 
study by (Tolooshams 2020) aims to enhance the quality of multichannel speech signals by 
leveraging a combination of dense U-Net architecture and channel attention mechanism. The 
architecture of the proposed model is based on the U-Net, which consists of an encoder and 
a decoder. The encoder captures the hierarchical representations of the input speech signals, 
while the decoder reconstructs the enhanced speech from these representations. Various 
time-frequency domain methods have been developed to leverage the rich auditory patterns 
present in the time-frequency spectrogram. However, a common observation in prior works 
is that the learning of long-range correlations along the time and frequency axes is typically 
carried out separately. In contrast, we believe that considering the long-range correlations 
along both axes is crucial, as harmonics are inherent in speech signals and noise characteristics 
require long-term statistical analysis. 

On the other hand, time-domain methods directly model the waveform of the mixture signal 
using an encoder-decoder framework. Empirical mode decomposition (EMD) method has 
been applied to analyze non-linear and non-stationary signals such as speech, and real noise. 
It consists to decompose a noisy speech signal into a set of IMFs (Huang 1998, He 2011). EMD 
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is particularly suitable for analyzing nonlinear and non-stationary signals, such as speech, 
where frequency components may vary over time. Therefore, EMD operates in the time 
domain rather than the frequency domain (Amezquita-Sanchez 2015, Pan 2016). Time-domain 
methods often benefit from the ability to capture long-term context and exploit the temporal 
correlations in the speech signal. In the last decades, speech enhancement based on deep 
learning is proposed due to recent advances in deep neural networks (DNNs) (Xu 2013, Xu 
2014). In (Wang 2013, Narayanan 2013), the authors have used the DNN to predict the mask. 
These approaches typically employ deep learning models such as convolutional neural 
networks (CNNs) (Zhang 2017, Wang 2018) or recurrent neural networks (RNNs) to capture 
the temporal dependencies and reconstruct the clean speech waveform. Among the recent 
approaches, we can cite the generative adversial networks method (GANs) that is used for 
generating realistic samples by learning the underlying distribution of the training data (Fu 
2019). In the context of speech enhancement, GANs can be employed to generate enhanced 
speech signals that align with certain metric scores. While time-domain methods successfully 
address the limitations associated with T-F domain methods, it is important to note that T-F 
domain representations provide clear distinctions between speech and noise patterns, which 
time-domain methods cannot fully exploit due to the lack of prior knowledge.  

3. Proposed Approach 

Figure 1 shows that our proposed approach is decomposed into three stages. In the first stage, 
the noisy speech frames is decomposed into its corresponding IMFs based on the empirical 
mode decomposition. The second stage consists to apply an improved version of principal 
component analysis to determine the IMFs that are less corrupted by noise signal (enhanced 
IMFs) and to utilize them for the reconstruction of speech. The third stage is based on a deep 
learning model to make the classification of each enhanced IMF. 

 
Figure 1: Block diagram of the proposed speech enhancement approach 
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3.1. EMD Decomposition 
In the first stage, the empirical mode decomposition is applied to extract the oscillatory modes 
embedded in the noisy speech signal without any requirement of linearity or stationarity of 
the data. The time series are decomposed into components with instantaneous frequencies 
that have been defined. This stage allows identifying the physical time scales between 
successive maxima and minima intrinsic to the speech signal (He 2011). So, we obtain the 
Intrinsic Mode Function (IMF) that describes each characteristic oscillatory mode and replaces 
the speech signal details on a certain scale. Among the advantages of IMF, it has unique local 
frequency, it is symmetric, and it has the number of maxima and minima equal or different at 
most by one to the number of zero crossings to exhibit the same frequency at the same time 
for different IMFs. The empirical mode decomposition analysis guaranteed that we obtain a 
complete decomposition and the number of maxima and minima decreases when going from 
one residual to the next and allow separating the signal into elementary components 
constituting the original speech signal in order to suppress the noise. 
We obtain the following equation (Equation 1): 

                                                     𝑥(𝑡) = ∑ 𝑓𝑖(𝑡) + 𝑟𝑁𝑏(𝑡)𝑁𝑏
𝑖=1                                                              (1) 

Where 𝑥(𝑡) is the noisy speech frame, 𝑓𝑖(𝑡)is the ith intrinsic mode functions (IMFs) with the 
same number of zero crossings and extrema, 𝑟𝑁𝑏(𝑡) is the residue and Nb is the number of 
selected IMFs. 
The empirical mode decomposition process consists of four steps for decomposing a signal 
𝑥(𝑘)using EMD. In the first step, we define the stopping criterion threshold ε and initialize the 
index of the ith IMFs to 1. In the second step, we initialize the residual signal 𝑟𝑖−1(𝑘)as the 
signal 𝑦(𝑘). In the third step, we extract the IMF components iteratively using the sifting 
process. For this, we initialize the 𝑓𝑖,𝑗−1(𝑘) to 𝑟𝑖−1(𝑘) with j is the sifting loop index. Then, we 

compute the upper and lower envelopes of 𝑓𝑖,𝑗−1(𝑘) using cubic spline interpolation to fit the 

local maxima and minima from𝑓𝑖,𝑗−1(𝑘)and obtain the mean envelope the difference between 

the local mean that is the average of the upper and lower enveloppes and the𝑓𝑖,𝑗−1(𝑘). Finally, 

we determine the number of selected IMFs automatically by computing the standard 

deviation criterion 𝛾(𝑖) with 𝛾(𝑖) =
∑ | 𝑓𝑖,𝑗−1(𝑘)− 𝑓𝑖,𝑗(𝑘)|

2𝑁
𝑛=1

( 𝑓𝑖,𝑗−1(𝑘))2
 and we  check if the sum of absolute 

differences between 𝑟𝑖−1(𝑘) and its neighboring IMF components is smaller than a threshold 
δ until the desired number of IMF components is reached. 
In the fourth step, the Fourier transform of ( )x k  is performed to obtain the IMFs observation 

matrix noted ( ),I m n of noisy speech in spectral domain by stacking every frame of the signal 

magnitude spectrum as column vectors over time sequences. We compute the FFT of the 𝑁𝑏 
selected IMFs components𝑓𝑖(𝑘)for each frame i by using the complex exponential function to 
decompose the time-domain IMFs into its frequency components. We obtain the matrix I that 
correspond to the 𝑁𝑏 IMFs in the spectral domain.  
(Equation 2) gives the FFT of the result signal: 

                                                                 ( )
1 2

0 1

( , ) ( )
N Nb j kn

N

i

k i

I m n f k w m k e
− −

= =

= −                                          (2) 

Where n is the index of the discrete frequency, m refers to the index of the time-frame, Nb is 
the number of selected IMFs determined in the previous step based on the sifting process, N
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is the length of the frequency analysis, and ( )w m is an analysis window function. In the 

frequency domain, we accumulate all frames of the speech spectrum magnitude ( ),I m n as 

column vectors to obtain the matrix representation I . 
In this stage, the noisy speech is devided into F  frames of N = 512 samples with half-length 
overlap. We obtain a matrix  = , , ..., I I I I

1 2 F
 with dimension F N . Each column in the noisy 

speech data matrix is decomposed into Nb  intrinsic mode functions (IMFs).  
The second stage will be detailed in the following sub-section. 

3.2. Improved principal component analysis 
In this stage, our contribution consists essentially to decompose the IMFs spectrogram of 
speech signal  = , , ..., I I I I

1 2 F
 obtainedd by the first stage. Then we apply the principal 

component analysis to determine three subspaces (the sparse matrix Sp , low-rank matrix L , 

and the residual matrix R ). Consequently, we impose non-negative constraints, and consider 
that the constraints for low-rank, and sparse, are not specified beforehand. 
By applying the principal component analysis, we obtain the following equation in the spectral 
domain (Equation 3): 

                                                                         I Sp L R= + +                                                                          (3) 

Where L , Sp and R represent respectively the low-rank matrix, the sparse matrix and the 

residual matrix. The goal is to separate the low-rank, sparse, and residual subspaces structures 
of clean speech from the noisy speech. The low-rank L decomposition is presented by a non-
negative factorization

K
GF , where G corresponds to the time-varying gains, and F

K
 is a set of 

basis. Therefore, the input matrix is described by the following equation (Equation 4): 

                                                                          I Sp R GF
k

= + +                                                                    (4) 

Then, we estimate the three subspaces described in (Equation 5): 

                                                            
2

,F
min - -

K Fp
I Sp GF

S k

  s.t. ( ) , ,card Sp s F  
K

G¡ ¡                     (5) 

Where ( )card Sp is the cardinality of Sp ,
F

.  makes reference to the Frobenius norm of a matrix. 

In order to make optimization, we solve the following three minimizations until convergence 
that is described by the (Equation 6): 

                                                                   

( )

2

2

2

0

Fcard Sp s

FG 0

FF

Sp arg min I -Sp-GF

G = arg min I -Sp-GF

F arg min I -Sp-GF







 =





=


K

K

K K
K

                                              (6) 

(Equation 7) solves the first and second minimizations as follow: 

                                                       {
𝐺 ←

|𝐹𝐾
𝑇(𝑆𝑝−𝐼)|−𝐹𝐾

𝑇(𝑆𝑝−𝐼)

2(𝐺𝐹𝐾
𝑇𝐹𝐾)

ʘ𝐺

𝐹𝐾 ←
|(𝑆𝑝−𝐼)𝐺𝑇|−(𝑆𝑝−𝐼)𝐺𝑇

2(𝐺𝐺𝑇𝐹𝐾)
ʘ𝐹𝐾

                                          (7) 
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Where ʘ denotes the element-wise division and the multiplication between the matrices. The 
updating of Sp

i
can be performed by selecting the top s largest non-zero entries of I -G F

i K
The 

proof of the convergence of our method to a local minimum is given as follows: 
In the ith iteration, we obtain the objective function by solving three sub-spaces, denoted as,

1

i
Sub , 2

i
Sub and 3

i
Sub respectively, is obtained (Equation 8): 

                                                           

( )

2
1

1 1
0

2
2

0

2
3

i F

i FF

i Fcard Sp s

Sub arg min I Sp G F

Sub arg min I Sp G F

Sub arg min I Sp G F

− −






 = − −



= − −

 = − −


(i ) (i) K(i )
G

(i-1) (i) K(i)

(i) (i) K(i)

K

                                                 (8) 

On the one hand, when comparing with
( 1)i

Sp
−

, the global optimality of Sp
(i)

ensure that
2 3

i i
Sub Sub . On the other hand, the updating strategy, which fixes F

K(i-1)
to find a more suitable

G
(i)

and fixes G
(i)

to find a more suitable F
K(i)

, leads to a decrease in the objective value. This 

deduction implies that the objective function consistently decreases throughout the iterative 
process. Furthermore, as the constraints are always satisfied, the objective function exhibits 
monotonic decrease and eventually converges to a local minimum. 

To estimate the cardinality of the sparse matrix Sp , we optimize the threshold to determine 

the parameter s . This optimization problem is addressed using an alternate optimization 
method, described by (Equation 9): 

                                                                
2

1( )
min

Fcard Sp s
I Sp GF Sp


+

K
- -                                               (9) 

Where
( )1 2

1

max ,
=

m m
 is a trade-off parameter between the speech distortion and noise 

reduction. 

After the the low-rank and sparse components are determined, residual noise R is derived as

R=I-Sp-GF
K

when Sp , G , and F
K

are determined. Then, we apply an ideal binary mask (Wang 

2005).  

Figure 2 shows respectively the spectrograms of clean speech, the noisy speech, and the 
enhanced speech signal using the improved version of the principal component analysis to the 
IMFs spectrogram of noisy speech signal. 

In Figure 2.c), we can observe that the sparse component accords with sparsity of speech 
energy in the frequency domain. 
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Figure 2: Spectrograms after application of two stages. a) Spectrogram of clean 

speech, b) Spectrogram of noisy speech with Babble noise at SNR = -5 dB, c) 
Spectrogram of the enhanced speech by our proposed two stages 

3.3. Deep Learning block 

For deep learning, we apply the framework described in Figure 3. For this, the spectrogram of 
enhanced IMFs obtained by the second stage is considered as the input of the feature of our 
deep learning model and to obtain directly the enhanced speech signal as an output time-
domain. The input of the model is the spectrogram's complex value𝐼𝑒 ∈ ℝ𝐹𝑏×𝑇𝑠×2, which Fb

corresponds to the number of frequency bands and Ts the number of time steps. Two 2D 
convolution layers receive the input matrix Ie as input.  

As a result, the proposed model's feature, 𝐼𝐹 ∈ ℝ𝐹𝑏×𝑇𝑏×𝑁𝑏𝑐, is obtained. Then it is divided 
into Nlb learning blocks with Nbc channels, and is considered as such. Every block produces

i
IF

features with i varied from 1 to Nlb  hyper-parameter. Four convolution layers and a dual-path 
attention block make up each learning block.  A batch normalization is used after each 
convolution layer's size of 3 3 . To find local correlations, it is used. Then, to find the long-
range correlations, we use a dual-path attention block. Finding harmonic correlations along 
the frequency axis and global correlations along the time axis are both made possible by the 
dual-path attention block. The 2D spectrogram is transformed into two vectors. The first 
vector has a dimension of Fb Nbc  along the frequency axis. While the second vector has a 
dimension of Ts Nbc along the time axis. The last block's enhanced spectrogram is supplied 
to the decoder layer in order to obtain the enhanced speech signal. 

Figure 3 illustrates the detail of learning framework of the proposed model.  
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Figure 3: Learning framework for speech enhancement 

4. Experiments and Results 
We evaluate and compare our proposed approach for speech enhancement in this section.  

4.1. Simulation conditions and dataset 

Pytorch has been used to implement our model. With a sample frequency of 16 kHz, a Hann 
window of length 32 ms, and an FFT size of 512 points, all speech signals are calculated. Each 
convolution layer uses 100 channels, the rectified linear activation function was applied after 
each layer, and batch normalization was applied after all convolutional layers. The loss 
function is the log mean square error, and Adam gradient is the optimizer. On the basis of a 
feature window made up of ten frames, we estimate the training target. 

For the speech enhancement evaluation in our simulations, we assessed the test set of the 
TIMIT and the NOIZEUS dataset. We make use of the NOISEX-92 database's white, factory, and 
babble noises (Varga 1993). The dataset is created by combining the voice signals and sounds 
at four different signal-to-noise ratios (SNRs) ranging from -10 to 5 dB.   

Our proposed speech enhancement approach is compared to seven state-of-the-art methods 
to evaluate its performance. The first method is an unsupervised approach called Robust 
Principal Component Analysis (RPCA), which decomposes the noisy speech into low-rank and 
sparse components (Candès 2011). Another unsupervised method, Empirical Wavelet 
Transform (EWT) that combines wavelet transform with EMD to segment the frequency 
spectrum (Amezquita-Sanchez 2015). A supervised deep neural network (DNN) model by 
Narayanan et al. (Narayanan 2013) utilizes fully connected hidden layers with rectified linear 
units and dropout. Wang and Tan (Wang 2018) proposed a supervised convolutional neural 
network (CNN) model with two Long Short-Term Memory (LSTM) layers to capture long-term 
context. Leglaive et al. (Leglaive 2020) introduced a supervised recurrent variational auto-
encoder called RNV, which fine-tunes a deep generative speech model using a Gaussian noise 
model based on non-negative matrix factorization. GAN model generate a realistic samples by 
learning the underlying distribution of the training data (Fu 2019). Finally, U-net applied an 
encoder and a decoder to enhance the quality of multichannel speech signals (Tolooshams 
2020). Comparing our approach to these methods allows us to assess its effectiveness in 
enhancing speech quality and reducing noise interference.  
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To test the performance of our proposed approach, intelligibility tests and subjective results 
were applied. 

4.2. Objective Results 

We assess the effectiveness of the proposed speech enhancement approach by comparing it 
to other methods, using the average scores of Segmental SNR (SegSNR), Perceptual Evaluation 
of Speech Quality (PESQ), Composite measures (Cov), and short-time objective intelligibility 
(STOI). The evaluation and comparison of the different methods are based on the following 
detailed metrics. The Perceptual Evaluation of Speech Quality (PESQ) metric involves mapping 
the original and enhanced speech signals onto an internal representation using a perceptual 
model. It provides a score range of [-0.5, 4.5] and assesses the perceived quality of the 
enhanced speech. The Segmental Signal-to-Noise Ratio (SegSNR) measures the speech quality 
by averaging the frame-level Signal-to-Noise Ratio (SNR) estimation. The Combination 
Objective Measure (Cov) combines evaluation measures from the frequency-domain, time-
domain, and perceptual field. It is calculated using (Equation 10): 

         Cov = 1.594 + 0.805 * PESQ - 0.512 * LLR - 0.007 * WSS                                   (10) 

where LLR represents the log-likelihood ratio and WSS denotes the weighted spectral slope. 
The definitions of these measures can be found in (Loizou 2013). Additionally, the Short-Time 
Objective Intelligibility (STOI) metric is designed to predict the intelligibility of speech 
processed by the proposed speech enhancement approach, with a score range between 0 and 
1. The average results of SegSNR, PESQ, Cov, and STOI measures for three types of noise are 
presented in the respective tables, enabling the evaluation and comparison of the different 
methods. 

Table 1 illustrates the results obtained with SegSNR metric, and the overall quality of proposed 
approach based on average PESQ scores.  

According to Table 1, the proposed approach outperforms U-net, Gan, RNV, CNN, DNN, RPCA, 
and EWT in terms of SegSNR for the two non-stationary noises at four SNRs. With white 
Gaussian noise the U-net-based model achieved the best results the at all SNRs. The primary 
cause is because before applying the model, U-net and RNV does a significant amount of off-
line training. We can also see that for low input SNR, EWT and RPCA approaches perform less 
well. This is due to the unsupervised nature of the EWT and RPCA speech augmentation 
approaches. 

Additionally, our proposed approach has the greatest PESQ scores with results that are only 
slightly superior to those of the examined methods at low SNR. The findings are comparable 
to those of the U-net, GAN, RNV and DNN-based models for all types of noise. 

Noise Method SegSNR (dB) PESQ 

White 

 -10 -5 0 5 -10 -5 0 5 

Proposed -0.26 -0.15 2.38 2.57 1.99 2.09 2.45 2.99 

U-NET -0.18 -0.13 2.48 2.67 1.97 2.06 2.46 2.98 

GAN -0.21 -0.11 2.43 2.62 1.95 2.03 2.41 2.94 

RNV -0.39 -0.11 2.47 2.65 1.87 1.92 2.43 2.95 

CNN -0.42 -0.29 2.14 2.33 1.78 1.83 2.26 2.81 

DNN -0.45 -0.75 2.07 2.38 1.69 1.74 2.22 2.89 

RPCA -1.37 -1.18 1.86 2.32 1.45 1.56 2.18 2.61 

EWT -1.42 -1.21 1.38 1.76 1.41 1.52 2.09 2.52 
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Noise Method SegSNR (dB) PESQ 

Babble 

Proposed -1.71 -1.57 -0.40 1.21 2.52 2.58 2.94 3.26 

U-NET -1.79 -1.59 -0.43 1.17 2.49 2.51 2.92 3.21 

GAN -1.74 -1.61 -0.45 1.18 2.43 2.47 2.89 3.19 

RNV -1.81 -1.63 -0.41 1.18 2.27 2.35 2.87 3.18 

CNN -1.84 -1.86 -0.52 1.07 2.13 2.22 2.68 3.12 

DNN -1.88 -1.78 -0.98 1.05 2.09 2.19 2.54 3.16 

RPCA -3.59 -3.47 -1.61 -0.29 1.98 2.11 2.42 2.94 

EWT -3.96 -3.88 -1.85 -0.86 1.81 1.97 2.27 2.76 

Factory 

Proposed 0.19 0.25 1.29 2.91 2.71 2.75 2.96 3.13 

U-NET 0.19 0.25 1.28 2.90 2.69 2.74 2.96 3.12 

GAN 0.19 0.21 1.27 2.91 2.63 2.67 2.92 3.11 

RNV 0.16 0.22 1.27 2.89 2.45 2.51 2.91 3.07 

CNN -0.18 -0.13 1.16 2.68 2.27 2.33 2.83 2.89 

DNN -0.14 0.05 1.02 2.34 2.15 2.25 2.85 2.92 

RPCA -1.37 -1.28 0.93 1.97 1.58 1.62 1.83 2.07 

EWT -1.69 -1.52 0.78 1.99 1.51 1.59 1.76 1.99 

Table 1: Average of SegSNR value and PESQ score for different speech enhancement methods 

Table 2 gives respectively the Cov, and the results of the STOI measures for the above-
mentioned methods, over all noise conditions. 

Noise Method Cov STOI 

White 

 -10 -5 0 5 -10 -5 0 5 

Proposed 2.29 2.37 2.99 3.73 0.68 0.74 0.82 0.91 

U-NET 2.32 2.36 3.02 3.71 0.63 0.74 0.81 0.91 

GAN 2.29  2.31  2.91 3.57 0.59 0.72 0.78 0.89 

RNV 2.21  2.29  2.87 3.41 0.59 0.71 0.79 0.89 

CNN 1.97 2.02 2.75 3.39 0.56 0.70 0.75 0.85 

DNN 1.87 1.95 2.58 3.24 0.53 0.71 0.75 0.84 

RPCA 1.74 1.76 2.33 2.90 0.37 0.59 0.63 0.69 

EWT 1.77 1.81 2.39 2.84 0.39 0.56 0.61 0.66 

Babble 

Proposed 2.59 2.64 3.12 3.28 0.55 0.64 0.79 0.85 

U-NET 2.57 2.61 3.10 3.23 0.53 0.64 0.77 0.85 

GAN 2.48 2.55 3.08 3.17 0.49 0.61 0.73 0.83 

RNV 2.47 2.51 3.07 3.14 0.49 0.62 0.70 0.82 

CNN 2.32 2.38 2.95 3.05 0.47 0.63 0.72 0.83 

DNN 2.14 2.21 2.84 2.91 0.48 0.63 0.75 0.82 

RPCA 1.97 2.06 2.52 2.87 0.39 0.52 0.59 0.63 

EWT 1.80 1.84 2.56 2.84 0.37 0.51 0.58 0.63 

Factory 

Proposed 2.44 2.45 3.24 3.51 0.61 0.67 0.72 0.85 

U-NET 2.41 2.47 3.27 3.53 0.61 0.69 0.73 0.86 

GAN 2.39 2.41 3.19 3.47 0.58 0.65 0.71 0.84 

RNV 2.32 2.37 3.13 3.45 0.57 0.64 0.69 0.83 

CNN 1.84 1.91 2.78 2.79 0.52 0.64 0.71 0.82 

DNN 1.87 1.99 2.71 2.84 0.51 0.63 0.71 0.81 

RPCA 1.46 1.51 2.23 2.49 0.47 0.54 0.61 0.64 

EWT 1.57 1.65 2.38 2.46 0.45 0.55 0.58 0.62 

Table 2: Average of Cov and STOI measures for different speech enhancement methods 
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Our approach exhibits a significant performance advantage over the compared speech 
enhancement methods. This superiority is evident through the highest Cov values recorded in 
Table 1. These results serve as evidence for the effectiveness of combining empirical mode 
decomposition with our improved principal component analysis. Several factors contribute to 
the outperformance of our method. For the U-NET Model, we can see that our approach 
consistently achieves superior results with the exception of white noise scenarios. The DNN, 
CNN, RNV, and GAN-based Models require the specification of noise rank. If the rank is set too 
low, it fails to adequately address the noise, while setting it too high leads to additional noise 
dimensions affecting speech segments and causing distortion. For unsupervised RPCA 
technique, the effectiveness of the RPCA method heavily relies on the careful selection of 
parameters to distinguish between low-rank sub-spaces and sparse. For the EWT method, we 
can remark the introduction of a ringing residual noise component. 

As depicted in Table 2, our approach consistently outperforms the compared methods in 
terms of the STOI measure, closely followed by U-net, GAN, RNV, CNN, and DNN-based models 
under high input SNR conditions. RPCA demonstrates the efficacy of PCA technique in high 
input SNR scenarios. However, the EWT method exhibits poor performance, attributed to the 
introduction of ringing residual noise. 

4.3. Subjective Results 

The inclusion of subjective results in the study serves an important purpose in clarifying and 
providing further insight into the proposed work. While objective metrics provide quantitative 
measures to evaluate speech enhancement algorithms, they may not fully capture the 
subjective perception of speech quality by human listeners. Therefore, conducting subjective 
evaluations allows the authors to gather feedback and opinions from human subjects who 
listen to and assess the enhanced speech. By incorporating subjective evaluations, the authors 
aim to provide a more comprehensive assessment of the proposed method's performance 
and its effectiveness in improving the perceived quality of speech. The subjective results 
provide valuable information about the subjective listening experience and the overall 
preference of listeners, helping to validate and reinforce the findings obtained from the 
objective metrics. This multi-faceted evaluation approach enhances the understanding of the 
proposed work and ensures that both objective and subjective aspects of speech quality are 
considered. 

For subjective listening tests, the mean opinion score (MOS) is conducted to evaluate our 
approach with compared methods. It consists to evaluate the overall quality (Brawata 2015).  
One hundred eighty five sentences from ten male, and seven female are randomly selected 
from the two databases and three background noises recorded in a white, babble, and factory 
was added to these sentences, at an SNR of 5 dB, and 0 dB. The resulting sequences were then 
enhanced using our approach and seven compared methods. The sequences are introduced 
to 16 expert listeners via head-phones (Praxiling 2021). Table 3 presents the average listening 
test scores over all sentences and listeners. As can be seen in Table 3, listeners considered 
that our approach is the most effective. Also, we can remark that the proposed approach, U-
net, and GAN based-models performs almost equal when set to a SNR = 5 dB. In contrast, our 
approach outperforms the U-net, and GAN based-model at SNR = 0 dB. The listeners have 
denoted an increased speech distortion for RPCA, and EWT at low SNR. Also, they observed 
that some unprocessed noisy sequence obtained perceived more natural than some enhanced 
sequences by EWT approach. 
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Type of 
noise 

SNR 
level 

Proposed 
Approach 

U-Net GAN RNV DNN CNN EWT RPCA 

White 5 dB 3,28 3,26 3,27 2,82 3,14 3,02 2,49 2,49 

 0 dB 2,65 2,38 2,27 2,12 2,05 1,89 2,67 1,61 

Babble 5 dB 3,54 3,51 3,48 3,03 3,52 3,41 1,79 2,37 

 0 dB 3,23 3,11 3,01 2,88 2,84 2,73 2,88 1,89 

Factory 5 dB 3,92 3,90 3,82 3,25 3,59 3,37 2,65 2,98 

 0 dB 3,46 3,19 3,06 2,98 2,84 2,61 3,04 2,03 

Table 3: Subjective evaluation of proposed approach, and compared methods 

5. Conclusions 

In this paper, we propose a speech enhancement approach. It is decomposed into three 
stages. In the first stage, the empirical model decomposition is applied. The second stage 
consists to use an improved version of principal component analysis in speech enhancement 
systems. The main concept is to use low-rank matrix, sparse matrix, and residual component 
decomposition to noisy speech. The third stage's objective is to create a cross-domain learning 
framework that can take advantage of long-range frequency and temporal correlations. We 
perform and evaluate our proposed approach using objective measurement, and listening 
tests. Results show that the combination of the EMD and improved PCA technique followed 
by a deep learning outperforms the state-of-the-art methods. Our approach achieves the 
highest PESQ, SegSNR, Cov and STOI metrics among compared methods at low SNR level. The 
subjective results confirmed the performance of our approach. 
Finally, in order to expand the suggested technique to monaural speech de-reverberation and 
separation, we intend to investigate the impact of loss functions and the choice of training 
objectives on the proposed approach. 
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